my favourite things about R
I am prepping a talk for R-Ladies Sydney about my favourite R things, the packages and functions that end up in every script I write.
I am prepping a talk for R-Ladies Sydney about my favourite R things, the packages and functions that end up in every script I write.
I keep googling these slides by David Ranzolin each time I try to combine mutate with ifelse to create a new variable that is conditional on values in other variables.
Cute #rstats monster art by the amazing Allison Horst. knitr::include_graphics("gatherspread.jpeg") I have been using gather() and spread() a lot lately. I’m on the tidy data train; long data is essential for ggplot etc, but sometimes you want to do calculations row wise, which is kinda complicated. For example, this week Matilda and I were working with her language/locomotion data and we were looking at the number of action-directed, affirmative, and descriptive responses that parents make to their infants.
I love me a good #rstats screencast. David Robinson has been screencasting his #TidyTuesday efforts for the past few months and while it is GREAT to watch a master at work, I just don’t have time to watch someone code for an hour, in order to extract a handful of tips. So when I saw Nick Tierney tweet about posting short videos that contain Just Three Things, I thought “that is a GREAT idea.
It is definitely true that it takes much longer to get your data ready for analysis than it does to actually analyse it. Apparently up to 80% of the data analysis time is spent wrangling data (and cursing and swearing). Did you know up to 80% of data analysis is spent on the process of cleaning and preparing data? - cf. Wickham, 2014 and Dasu and Johnson, 2003 So here is an excellent approach to data wrangling in #rstats https://t.
Emily Robinson writes a great blog called www.hookedondata.org. She talked at the 2018 New York R conference recently and shared some of her favourite (less well known) stars of the Tidyverse. Here are her slides www.tiny.cc/nyrtalk and my notes… 1.use as_tibble() Tibble = modern dataframe. Use instead of printing your dataset to the console. as_tibble() will only print the first 10 rows and columns that fit on the screen.
I have been doing lots of data wrangling recently and decided a needed a quick rundown of data cleaning in R. Here are notes on useful things I learned recently. Quick summaries class() will let you know whether you are working with a dataframe or not dim() gives you a little info about the dimensions of your data by telling you how many rows nd columns you have